Joseph-Louis Lagrange

Ji testwiki
Guhartoya 19:21, 20 hezîran 2024 ya ji aliyê imported>Balyozbot (Bot: Paqijiyên kozmetîk (Şablonên beralîkirî guhart, Binê standard kir, Lînk paqij kir, --Valahiyên nehewce.)) ve
(cudahî) ← Guhartoya kevintir | Guhartoya niha (cudahî) | Guhartoya nûtir → (cudahî)
Here nagîvasyonê Here lêgerînê

Şablon:Agahîdank mirov Joseph Louis Lagrange, matematîknas û  stêrnasê îtalyan e. Ew di 25ê çileya sala 1736an de li Torînoyê ji dayik bûye. Li gorî rayekê ew matematîknasê herî mezin ê sedsala hijdehem e.[1] Ew beşekê jîna xwe li Prûsyayê, beşeke din jî li Fransayê bihartiye. Ew ji teoriya hejmaran heta mekanîka esmanî xebatên girîng kiriye.

Ew di sala 1766an de li ser qewîtiya Euler û d'Alembertê ve dest pê gerînendetiya matematîkê ya Akademiya Zanistan a Prûsyayê kir. Ew ji 20 sal pirtir li wê derê ma û di vî wextî de gelek berhem anî holê. Di heman katî de jî ew gelek xelat ji Akademiya Zanistan a Fransayê girt.

Dozîneya wî ya ku di sala 1788an de li ser mekanîka analîtîkî kiribû, piştî Newtonê xebata herî berfireh bû û ev dozîne di sedsala nozdehem de ji bo pêşvebirina fizîka matematîkî pir alîkar bû.[2]

Jîna wî

Malbata wî îtalyan bû, belam li ber vê jî bav û kalên wî yên Fransayî hebûn. Di sala 1787an de wexta ku 51 salî bû ji Berlînê mala xwe bir Fransayê û li Fransayê bû endamê Akademiya Fransayî û heta dawiya jîna xwe li Fransayê ma. Ji ber vê yekê Lagrange carna wek Fransayî carna jî wek Îtalyan tê ramankirin.

Di sala 1794an de wexta ku École Polytechnique vebû, li wê derê profesorê analîz ê yekem bû. Lagrange di 10ê nîsana sala 1813an de li Parîsê mir û navê wî jî wekî navên endezyar, matematîkzan û zanyarên Fransayî, li ser Barûya Eyfelê hatiye nivîsandin.

Hevkêşeya Defransiyel a Lagrange

Lagrange di matematîkê de li ser hevkêşeyên defransiyel de gelek xebat kiriye û hevkêşeyekê bi navê wî jî heye.

Hevkêşeya Lagrange bi vî awayî ye :: y=xg(y)+f(y)[3]

Ji bo çareserkirina giştî ya vê hevkêşeyê, li gorî x'ê darişteya her du aliyê hevkêşeyê tê girtin. Lê belê di serî de ji bo ku di çareserkirinê de tevlihevî çê nebe, em ji darişteya y'ê re p bêjin.(y=p)

dydx=g(p)+xg(p)dpdx+f(p)dpdx

li vir derê ji bo ku em di serî ji dydx re p gotibûn, em karin hevkêşeya xwe bi vî awayî binivîsin:[4]

p=g(p)+(xg(p)+f(p))dpdx

li vir derê heke em fonksiyona g yê girêdayî p bişeyinî aliyê din, hevkêşe wiha dibe:

pg(p)=(xg(p)+f(p))dpdx

Ji vir derê:

  • Heke pg(p)=0 ê bibe, regeke reel ê hevkêşeyê dê hebe. Ev reg wek p=a tê terîfkirin û ev îfade di hevkêşeya Lagrangeê de bê nivîsandin, hevkêşeya nû dê bi vî awayî bibe:
    • y=xg(a)+f(a) : Ev fonksiyonê ku ji neguhora kêfî re girêdayî nîn e, çareseriyeke tekane ye.
  • Heke pg(p)0 bibe, hevkêşeya pg(p)=(xg(p)+f(p))dpdx bi sererastkirinê tê vî halî:
    • dxdpg(p)pg(p)x=f(p)pg(p)
    • Bi çareserkirina vê hevkêşeya lîneer a ku li gorî x'ê hatiye nivîsandin, çareseriya x=P(p,c) tê bidestxistin.

Di navbera ev îfade û hevkêşeyê de p ji navê tê rakirin û çareserî tê dîtin.

Jê cuda binêrin

Çavkanî

Şablon:Çavkanî

Şablon:Kontrola otorîteyê

  1. W.W. Rouse Ball, 1908 Joseph Louis Lagrange (1736 - 1813)[1], A short account of the history of mathematics, 4th ed.
  2. Lagrange, Joseph-Louis 1888–89. Mécanique Analytique, 4th ed., 2 vols. Paris: Gauthier-Villars et fils.
  3. Çözümlü Diferansiyel Denklem Problemleri,Doç.Dr. Erhan Pişkin, rûpela 193yem
  4. Çözümlü Diferansiyel Denklem Problemleri,Doç.Dr. Erhan Pişkin, rûpela 194em